lunes, 28 de septiembre de 2015
Tecnicas de recuperacion de memoria.
Técnicas de recuperación
La extensión del daño sufrido por la base de datos. Por ejemplo, si se encuentra que ha sido un único registro el que ha sufrido daños, la técnica de recuperación es trivial, en comparación con el procedimiento de restauración necesario después de un choque de una cabeza.
Copias de seguridad de la base de datos
Para poder efectuar cualquier tipo de restauración de una base de datos, es necesaria la realización de copias de seguridad (backups) de la base de datos de forma periódica. Este proceso consiste en la escritura de una copia exacta de la base de datos en un dispositivo magnético separado del que contiene a la propia base de datos. En los sistemas más grandes, este dispositivo suele ser una cinta magnética. En los sistemas basados en microordenadores, puede tratarse de un cartucho de cinta de casete, o de uno o más discos flexibles. Habitualmente, mientras se está generando una copia de seguridad es preciso detener todas las demás actividades de la base de datos.
A menudo se realiza más de una única copia, que luego se almacenan en un lugar lejos del ordenador, y alejadas entre sí, con el fin de que si algún tipo de suceso catastrófico produjese la destrucción del ordenador, al menos una de las copias en cinta no resultase dañada por el mismo suceso. Cuando se trata de bases de datos críticas, como las que guardan información bancaria, suele guardarse al menos una copia en un lugar alejado bastantes kilómetros de la instalación del ordenador. Además, no es raro que se mantengan varias generaciones de copias, para añadir un nivel de seguridad adicional.
Un método sencillo de recuperación
El método más simple de recuperación de una base de datos es el expuesto a continuación. Periódicamente, quizá una vez cada día, se realiza una copia de seguridad de la base de datos. Comenzando a partir del momento en el que se hace cada copia, se lleva manualmente una lista física, o diario (log), de todos los cambios subsiguientes que se efectúan en la base de datos. Si la base de datos es dañada o destruida, para recuperarla es preciso seguir la secuencia de pasos siguiente:
- Reparar el problema de hardware o software que causó la caída del sistema.
- Restaurar la base de datos a partir de la copia de seguridad más reciente. Esto no restaura la base de datos a su estado en el instante en el que tuvo lugar el daño.
- Volver a introducir manualmente en la base de datos los cambios realizados desde que se hizo la copia, usando la lista física.
Recuperación por adelanto
El adelanto es otro tipo de mecanismo de recuperación, que se usa a menudo cuando una base de datos ha sido dañada y debe, por tanto, ser restaurada a partir de una copia de seguridad. Se parece a la técnica del retroceso, y comparte con ésta la ventaja de que es mucho más rápida que el método de restauración/reejecución. Requiere que el diario de transacciones contenga una imagen final de cada registro de la base de datos que ha sido modificado desde la última copia. Una imagen final es una copia de un registro, inmediatamente después de haber sido modificado como parte de una transacción, es decir, en el estado en que se encuentra al finalizar dicha transacción.
En su forma más simple, esta técnica consta de dos etapas:
1. Después de un fallo que produce un daño en la base de datos, se utiliza la última copia de seguridad para restaurarla.
2. Se procesa el diario, a partir del punto en que se efectuó la última copia de seguridad. Para cada transacción completada anotada en el diario, se sustituye la versión actual del registro de la base de datos por la imagen final correspondiente.
Esta técnica es considerablemente más rápida que la de restauración/reejecución, ya que la sustitución de un registro por su imagen final lleva mucho menos tiempo que el proceso de recreación de la base de datos completa a partir de la copia de seguridad.
Existen variaciones del método de adelanto básico, diseñadas para mejorar aún más la velocidad de la recuperación de la base de datos. Por ejemplo, el conjunto completo de imágenes finales puede ordenarse primero por número de registro. De esta forma, después sólo hace falta escribir en la base de datos la última imagen final de cada registro. Para los registros con varias modificaciones anotadas en el diario, esto puede suponer un considerable ahorro en tiempo de procesamiento.
Recuperación por retroceso
La recuperación por retroceso resulta útil en situaciones en las que el procesamiento de la base de datos se ve interrumpido, pero la base de datos en sí no resulta dañada de forma alguna. Un ejemplo de esto podría ser algún tipo de fallo que produzca una terminación anormal de la ejecución del SGBD. Las transacciones en marcha podrían ser abortadas antes de su finalización, y los registros asociados a las mismas quedarían en estados desconocidos, aunque el resto de la base de datos no se vería afectada.
La técnica de recuperación por retroceso requiere que el diario de transacciones contenga imágenes iniciales de cada registro de la base de datos que haya sufrido modificaciones desde la última copia de seguridad. Una imagen inicial es una copia de un registro tal como se encontraba inmediatamente antes de ser modificado como parte de una transacción, es decir, justo antes del inicio de dicha transacción.
El procesado de recuperación por retroceso conlleva que después de que se haya colocado nuevamente en funcionamiento el SGBD, con la base de datos correcta, tal como estaba cuando tuvo lugar la interrupción, se pase a procesar el diario de transacciones. Para cada transacción incompleta anotada en el diario se reemplaza la versión actual del registro de la base de datos por la imagen inicial correspondiente. Así, cada registro de la base de datos que ha sufrido modificaciones durante una transacción no completada es devuelto a su estado inicial, antes del comienzo de la transacción. El resultado de este proceso es la eliminación de la base de datos de todas las huellas de transacciones incompletas, es decir, las que estaban en marcha cuando tuvo lugar la caída.
Para que la recuperación por retroceso pueda funcionar, el diario de transacciones debe contener marcas de “comienzo de transacción” y de “final de transacción” para cada transacción. Cuando se realiza un proceso de recuperación, las transacciones incompletas se detectan por la ausencia de una marca de “final de transacción”.
fuente: http://informaticasierralunacarlospaloma.blogspot.com.ar/p/42-tecnicas-de-recuperacion.html
Posted by
Admin
5:50
lunes, 14 de septiembre de 2015
Seguridad informatica
Seguridad informática
Se entiende por seguridad informática al conjunto de normas, procedimientos y herramientas, que tienen como objetivo garantizar la
disponibilidad, integridad, confidencialidad y buen uso de la información que reside en
un sistema de información.
disponibilidad, integridad, confidencialidad y buen uso de la información que reside en
un sistema de información.
Cada día más y más personas mal intencionadas intentan tener acceso a los datos de
nuestros ordenadores.
nuestros ordenadores.
El acceso no autorizado a una red informática o a los equipos que en ella se encuentran
pueden ocasionar en la gran mayoría de los casos graves problemas.
pueden ocasionar en la gran mayoría de los casos graves problemas.
Uno de las posibles consecuencias de una intrusión es la pérdida de datos. Es un hecho
frecuente y ocasiona muchos trastornos, sobre todo si no estamos al día de las copias
de seguridad. Y aunque estemos al día, no siempre es posible recuperar la totalidad de los
datos.
frecuente y ocasiona muchos trastornos, sobre todo si no estamos al día de las copias
de seguridad. Y aunque estemos al día, no siempre es posible recuperar la totalidad de los
datos.
Otro de los problemas más dañinos es el robo de información sensible y confidencial. La
divulgación de la información que posee una empresa sobre sus clientes puede acarrear demandas millonarias contra esta, o un ejemplo mas cercano a usted es el de nuestras contraseñas de las cuentas de correo por las que intercambiamos información con otros.
divulgación de la información que posee una empresa sobre sus clientes puede acarrear demandas millonarias contra esta, o un ejemplo mas cercano a usted es el de nuestras contraseñas de las cuentas de correo por las que intercambiamos información con otros.
Con la constante evolución de las computadoras es fundamental saber que recursos necesitar para obtener seguridad en los sistemas de información.
El Primer Virus de Computadoras
El primer virus atacó una máquina IBM Serie 360, fue llamado Creeper, creado en 1972 por Robert Thomas Morris. Este programa emitía periódicamente en la pantalla el mensaje: "I'm a creeper catch me if you can!" (Soy un (insecto), agárrenm si pueden). Para eliminar este problema fue creado el primer programa antivirus denominado Reaper.
Sin embargo, el término virus no sería adoptado hasta 1984, aunque ya existían antes. El inicio de todo se dio en los laboratorios de Bell Computers. Cuatro programadores (H. Douglas Mellory, Robert Morris, Victor Vysottsky y Ken Thompson) desarrollaron un juego llamado Core Wars, que consistía en ocupar toda la memoria RAM del equipo contrario en el menor tiempo posible.
Mecanismos de seguridad
Un mecanismo de seguridad informática es una técnica o herramienta que se utiliza para fortalecer la confidencialidad , la integridad y/o la disponibilidad de un sistema informático.
Existen muchos y variados mecanismos de seguridad informática. Su selecion depende del tipo de sistema, de su función y de los factores de riesgo que lo amenazan.
Clasificación según su función:
Preventivos: Actúan antes de que un hecho ocurra y su función es detener agentes no deseados.
Detectivos: Actúan antes de que un hecho ocurra y su función es revelar la presencia de agentes no deseados en algún componente del sistema. Se caracterizan por enviar un aviso y registrar la incidencia.
Correctivos: Actúan luego de ocurrido el hecho y su función es corregir la consecuencias.
Según un informe del año 1991 del Congressional Research Service, las computadoras tienen dos características inherentes que las dejan abiertas a ataques o errores operativos
1.-Una computadora hace exactamente lo que está programada para hacer, incluyendo la revelación de información importante. Un sistema puede ser reprogramado por cualquier persona que tenga los conocimientos adecuados.
2.-Cualquier computadora puede hacer sólo aquello para lo que está programada , no puede protegerse a sí misma contra un mal funcionamiento o un ataque deliberado a menos que este tipo de eventos haya sido previsto de antemano y se hayan puesto medidas necesarias para evitarlos.
Los propietarios de computadoras y los administradores utilizan una gran variedad de tecnicas de seguridad para protegerse:
1. Restricciones al acceso Físico: Esta consiste en la aplicación de barreas y procedimientos de control, como medidas de prevención y contra medidas ante amenazas a los recursos de información confidencial.
Se refiere a los controles y mecanismos de seguridad dentro y alrededor del dentro de computo así como los medios de accesos remoto al y desde el mismo, implementados para proteger el hardware y medios de almacenamiento de datos. Una forma de reducir las brechas de seguridad es asegurarse de que sólo las personas autorizadas pueden acceder a una determinada máquina. Las organizaciones utilizan una gran variedad de herramientas técnicas para identificar a su personal autorizado. Las computadoras pueden llevar a cabo ciertas comprobaciones de seguridad, los guardias de seguridad humanos otras. En función del sistema de seguridad implementado, podrá acceder a un sistema en función a:
- Algo que usted tenga: Una llave, una tarjeta de identificación con una fotografía o una tarjeta inteligente que contenga una identificación digital codificada almacenada en un chip de memoria.
- Algo que usted conozca: una contraseña, un número de identificación, una combinación de bloqueo o algo de su historial personal.
- Algo que usted haga: Su firma o su velocidad de escrituras y los patrones de error.
- Verificación Automática de Firmas (VAF)
Huella Digital Basado en el principio de que no existen dos huellas dactilares iguales, este sistema viene siendo utilizado desde el siglo pasado con excelentes resultados.
Verificación de Voz: La dicción de una (o más) frase es grabada y en el acceso se compara la vos (entonación, diptongos, agudeza, etc.). Este sistema es muy sensible a factores externos como el ruido, el estado de animo y enfermedad de la persona, el envejecimiento, etc.
Verificación de Patrones Oculares: Estos modelos pueden estar basados en los patrones del iris o de la retina y hasta el momento son los considerados más efectivos (en 200 millones de personas la probabilidad de coincidencia es casi 0).
Posted by
Admin
6:36
lunes, 4 de mayo de 2015
Sistema Operativo
Definición
El conjunto de programas informativos que permite la administración eficaz de los recursos de una computadora es conocido como sistema operativo o software de sistema. Estos programas comienzan a trabajar apenas se enciende el equipo, ya que gestionan el hardware desde los niveles más básicos y permiten además la interacción con el usuario.
Tipos
1) DOS: El famoso DOS, que quiere decir Disk Operating System (sistema operativo de disco), es más conocido por los nombres de PC-DOS y MS-DOS. MS-DOS fue hecho por la compañía de software Microsoft y es en esencia el mismo SO que el PC-DOS.
La razón de su continua popularidad se debe al aplastante volumen de software disponible y a la base instalada de computadoras con procesador Intel.
Cuando Intel liberó el 80286, DOS se hizo tan popular y firme en el mercado que DOS y las aplicaciones DOS representaron la mayoría del mercado de software para PC. En aquel tiempo, la compatibilidad IBM, fue una necesidad para que los productos tuvieran éxito, y la "compatibilidad IBM" significaba computadoras que corrieran DOS tan bien como las computadoras IBM lo hacían.
Aún con los nuevos sistemas operativos que han salido al mercado, todavía el DOS es un sólido contendiente en la guerra de los SO.
2) Windows 3.1: Microsoft tomo una decisión, hacer un sistema operativo que tuviera una interfaz gráfica amigable para el usuario, y como resultado obtuvo Windows. Este sistema muestra íconos en la pantalla que representan diferentes archivos o programas, a los cuales se puede accesar al darles doble click con el puntero del mouse. Todas las aplicaciones elaboradas para Windows se parecen, por lo que es muy fácil aprender a usar nuevo software una vez aprendido las bases.
3) Windows 95: En 1995, Microsoft introdujo una nueva y mejorada versión del Windows 3.1. Las mejoras de este SO incluyen soporte multitareas y arquitectura de 32 bits, permitiendo así correr mejores aplicaciónes para mejorar la eficacia del trabajo.
4) Windows NT: Esta versión de Windows se especializa en las redes y servidores. Con este SO se puede interactuar de forma eficaz entre dos o más computadoras.
5) OS/2: Este SO fue hecho por IBM. Tiene soporte de 32 bits y su interfaz es muy buena. El problema que presenta este sistema operativo es que no se le ha dad el apoyo que se merece en cuanto a aplicaciones se refiere. Es decir, no se han creado muchas aplicaciones que aprovechen las características de el SO, ya que la mayoría del mercado de software ha sido monopolizado por Windows.
6) Mac OS: Las computadoras Macintosh no serían tan populares como lo son si no tuvieran el Mac OS como sistema operativo de planta. Este sistema operativo es tan amigable para el usuario que cualquier persona puede aprender a usarlo en muy poco tiempo. Por otro lado, es muy bueno para organizar archivos y usarlos de manera eficaz. Este fue creado por Apple Computer, Inc.
7) UNIX: El sistema operativo UNIX fue creado por los laboratorios Bell de AT&T en 1969 y es ahora usado como una de las bases para la supercarretera de la información. Unix es un SO multiusuario y multitarea, que corre en diferentes computadoras, desde supercomputadoras, Mainframes, Minicomputadoras, computadoras personales y estaciones de trabajo. Esto quiere decir que muchos usuarios puede estar usando una misma computadora por medio de terminales o usar muchas de ellas.
Evolución de los Sistemas Operativos:
Posted by
Admin
4:37
domingo, 3 de mayo de 2015
Almacenamiento Físico y virtual
Almacenamiento Físico
En un sistema de cómputo es evidente que existe la necesidad por parte de los usuarios y aplicaciones de almacenar datos en algún medio, a veces por periodos largos y a veces por instantes. Cada aplicación y cada usuario debe tener ciertos derechos con sus datos, como son el poder crearlos y borrarlos, o cambiarlos de lugar; así como tener privacidad contra otros usuarios o aplicaciones. El subsistema de archivos del sistema operativo se debe encargar de estos detalles, además de establecer el formato físico en el cual almacenará los datos en discos duros, cintas o discos flexibles. Debe ser conocido por todos que tradicionalmente la información en los sistemas modernos se almacena en discos duros, flexibles y unidades de disco óptico, y en todos ellos se comparten algunos esquemas básicos para darles formato físico: las superficies de almacenamiento son divididas en círculos concéntricos llamados "pistas" y cada pista se divide en "sectores". A la unión lógica de varias pistas a través de varias superficies "paralelas" de almacenamiento se les llama "cilindros", los cuales son inspeccionados al momento de lectura o escritura de datos por las respectivas unidades físicas llamadas "cabezas". Las superficies de almacenamiento reciben el nombre de "platos" y generalmente están en movimiento rotatorio para que las cabezas tengan acceso a las pistas que los componen. Los datos se escriben a través de los sectores en las pistas y cilindros modificando las superficies por medio de las cabezas.
El tiempo que una cabeza se tarda en ir de una pista a otra se le llama "tiempo de búsqueda" y dependerá de la distancia entre la posición actual y la distancia a la pista buscada. El tiempo que tarda una cabeza en ir del sector actual al sector deseado se le llama tiempo de latencia y depende de la distancia entre sectores y la velocidad de rotación del disco. El impacto que tiene las lecturas y escrituras sobre el sistema está determinado por la tecnología usada en los platos y cabezas y por la forma de resolver las peticiones de lectura y escritura, es decir, los algoritmos de planificación.
Almacenamiento Virtual
Hace muchos años las personas enfrentaron por primera vez programas que eran demasiado grandes para caber en la memoria disponible. La solución que normalmente se adoptaba era dividir el programa en fragmentos, llamados superposiciones. La superposición O era la primera que se ejecutaba. Al terminar, esta superposición llamaba a otra. Algunos sistemas de superposición eran muy complejos, pues permitían varias superposiciones en la memoria a la vez. Las superposiciones se mantenían en disco y el sistema operativo las intercambiaba con la memoria dinámicamente, según fuera necesario.
Aunque el trabajo real de intercambiar las superposiciones corría por cuenta del sistema, la tarea de dividir el programa en fragmentos tenía que ser efectuada por el programador. La división de programas grandes en fragmentos modulares pequeños consumía tiempo y era tediosa. No pasó mucho tiempo antes de que a alguien se le ocurriera una forma de dejar todo el trabajo a la computadora.
El método que se inventó (Fotheringham, 1961) se conoce ahora como memoria virtual. La idea en que se basa la memoria virtual es que el tamaño combinado del programa, los datos y la pila puede exceder la cantidad de memoria física disponible para él. El sistema operativo mantiene en la memoria principal las partes del programa que actualmente se están usando, y el resto en el disco. Por ejemplo, un programa de 16M puede ejecutarse en una máquina de 4M si se escogen con cuidado los 4M que se mantendrán en la memoria en cada instante, intercambiando segmentos del programa entre el disco y la memoria según se necesite.
La memoria virtual también puede funcionar en un sistema de multiprogramación, manteniendo segmentos de muchos programas en la memoria a la vez. Mientras un programa está esperando que se traiga a la memoria una de sus partes, está esperando E/S y no puede ejecutarse, así que puede otorgarse el CPU a otro proceso, lo mismo que en cualquier otro sistema de multiprogramación.
En un sistema de cómputo es evidente que existe la necesidad por parte de los usuarios y aplicaciones de almacenar datos en algún medio, a veces por periodos largos y a veces por instantes. Cada aplicación y cada usuario debe tener ciertos derechos con sus datos, como son el poder crearlos y borrarlos, o cambiarlos de lugar; así como tener privacidad contra otros usuarios o aplicaciones. El subsistema de archivos del sistema operativo se debe encargar de estos detalles, además de establecer el formato físico en el cual almacenará los datos en discos duros, cintas o discos flexibles. Debe ser conocido por todos que tradicionalmente la información en los sistemas modernos se almacena en discos duros, flexibles y unidades de disco óptico, y en todos ellos se comparten algunos esquemas básicos para darles formato físico: las superficies de almacenamiento son divididas en círculos concéntricos llamados "pistas" y cada pista se divide en "sectores". A la unión lógica de varias pistas a través de varias superficies "paralelas" de almacenamiento se les llama "cilindros", los cuales son inspeccionados al momento de lectura o escritura de datos por las respectivas unidades físicas llamadas "cabezas". Las superficies de almacenamiento reciben el nombre de "platos" y generalmente están en movimiento rotatorio para que las cabezas tengan acceso a las pistas que los componen. Los datos se escriben a través de los sectores en las pistas y cilindros modificando las superficies por medio de las cabezas.
El tiempo que una cabeza se tarda en ir de una pista a otra se le llama "tiempo de búsqueda" y dependerá de la distancia entre la posición actual y la distancia a la pista buscada. El tiempo que tarda una cabeza en ir del sector actual al sector deseado se le llama tiempo de latencia y depende de la distancia entre sectores y la velocidad de rotación del disco. El impacto que tiene las lecturas y escrituras sobre el sistema está determinado por la tecnología usada en los platos y cabezas y por la forma de resolver las peticiones de lectura y escritura, es decir, los algoritmos de planificación.
Almacenamiento Virtual
Hace muchos años las personas enfrentaron por primera vez programas que eran demasiado grandes para caber en la memoria disponible. La solución que normalmente se adoptaba era dividir el programa en fragmentos, llamados superposiciones. La superposición O era la primera que se ejecutaba. Al terminar, esta superposición llamaba a otra. Algunos sistemas de superposición eran muy complejos, pues permitían varias superposiciones en la memoria a la vez. Las superposiciones se mantenían en disco y el sistema operativo las intercambiaba con la memoria dinámicamente, según fuera necesario.
Aunque el trabajo real de intercambiar las superposiciones corría por cuenta del sistema, la tarea de dividir el programa en fragmentos tenía que ser efectuada por el programador. La división de programas grandes en fragmentos modulares pequeños consumía tiempo y era tediosa. No pasó mucho tiempo antes de que a alguien se le ocurriera una forma de dejar todo el trabajo a la computadora.
El método que se inventó (Fotheringham, 1961) se conoce ahora como memoria virtual. La idea en que se basa la memoria virtual es que el tamaño combinado del programa, los datos y la pila puede exceder la cantidad de memoria física disponible para él. El sistema operativo mantiene en la memoria principal las partes del programa que actualmente se están usando, y el resto en el disco. Por ejemplo, un programa de 16M puede ejecutarse en una máquina de 4M si se escogen con cuidado los 4M que se mantendrán en la memoria en cada instante, intercambiando segmentos del programa entre el disco y la memoria según se necesite.
La memoria virtual también puede funcionar en un sistema de multiprogramación, manteniendo segmentos de muchos programas en la memoria a la vez. Mientras un programa está esperando que se traiga a la memoria una de sus partes, está esperando E/S y no puede ejecutarse, así que puede otorgarse el CPU a otro proceso, lo mismo que en cualquier otro sistema de multiprogramación.
Posted by
Admin
13:40
Dispositivos y Soportes de almacenamiento.
Los Dispositivos de Almacenamiento.
Son aparatos que escriben y leen datos en un soporte. Estos dispositivos, por lo tanto, trabajan en conjunto con todos los medios donde se almacenan los archivos de una computadora u otro sistema informático, tanto lógica como físicamente.
Un disco rigido es un dispositivo de almacenamiento. Este tipo de aparato dispone de uno o más discos que se encuentran unidos por un mismo eje y que giran en una estructura metálica. Cada disco presenta cabezales de lectura/escritura para trabajar con la información.
Las unidades de CD-ROM o DVD-ROM también son dispositivos de almacenamiento. Estas unidades pueden ser sólo lectoras o tener la capacidad para grabar información en el formato correspondiente (CD o DVD). La inmensa popularidad de los dispositivos de CD-ROM y DVD-ROM, dadas sus ventajas por sobre las disqueteras, consiguieron en su momento que las últimas quedasen en desuso, a causa de ofrecer una capacidad muy limitada y una velocidad de lectura y transferencia mucho menor.
Entre los dispositivos de almacenamiento que más han crecido en los últimos años, se encuentran los lectores de tarjeta de memoria, que forman parte de las computadoras a través del puerto USB o de algún tipo de placa. Las tarjetas de memoria resultan más resistentes que los CD-ROM y los DVD-ROM y, dadas sus dimensiones y su naturaleza compacta, son más fáciles de trasladar.
Los Soportes de Almacenamiento
Un soporte de almacenamiento es un sistema que da soporte al almacenamiento de
datos en un computador. En todo soporte de almacenamiento podemos identificar dos elementos
principales: un medio de almacenamiento y un dispositivo electrónico que escribe y lee datos en
él. Veámoslos:
– El medio de almacenamiento es el medio físico donde se almacenan los datos, y puede ser
extraible o no extraible:
– Extraible. Es el caso de los disquetes, CD, DVD, etc. Al ser extraibles nos permiten
transportar la información de forma cómoda.
– No extraible. Es el caso del disco que hay dentro de las unidades de disco duro. No
podemos sacarlo a no ser que rompamos la unidad.
– El dispositivo electrónico tiene la función de leer y escribir datos en el medio de
almacenamiento para el cual ha sido diseñado. Podemos clasificarlos en dos tipos:
– Solo lectura. Un dispositivo de solo lectura es aquél que solo puede leer datos, nada de
escribirlos. Ejemplo: Unidad lectora de CD-ROM y DVD-ROM.
– Lectura y escritura. Estos dispositivos tienen la capacidad tanto de leer como de escribir
datos. Ejemplo: Disquetera, unidad grabadora de CD-R y DVD-R.
Por ejemplo, una disquetera es un dispositivo electrónico capaz de guardar información en un
disquete, que en este caso sería el medio de almacenamiento. De igual modo, una grabadora de
DVD es un dispositivo electrónico capaz de guardar datos en un disco DVD, que es un medio de
almacenamiento.
Podemos clasificar los soportes de almacenamiento en internos y externos:
– Soportes internos. Son aquellos que se situan en el interior de la caja del ordenador.
– Soportes externos. Son los que están en la periferia del ordenador y se conectan al mismo a
través de un puerto de conexión como por ejemplo el puerto USB o el puerto Fire Wire.
Son aparatos que escriben y leen datos en un soporte. Estos dispositivos, por lo tanto, trabajan en conjunto con todos los medios donde se almacenan los archivos de una computadora u otro sistema informático, tanto lógica como físicamente.
Un disco rigido es un dispositivo de almacenamiento. Este tipo de aparato dispone de uno o más discos que se encuentran unidos por un mismo eje y que giran en una estructura metálica. Cada disco presenta cabezales de lectura/escritura para trabajar con la información.
Las unidades de CD-ROM o DVD-ROM también son dispositivos de almacenamiento. Estas unidades pueden ser sólo lectoras o tener la capacidad para grabar información en el formato correspondiente (CD o DVD). La inmensa popularidad de los dispositivos de CD-ROM y DVD-ROM, dadas sus ventajas por sobre las disqueteras, consiguieron en su momento que las últimas quedasen en desuso, a causa de ofrecer una capacidad muy limitada y una velocidad de lectura y transferencia mucho menor.
Entre los dispositivos de almacenamiento que más han crecido en los últimos años, se encuentran los lectores de tarjeta de memoria, que forman parte de las computadoras a través del puerto USB o de algún tipo de placa. Las tarjetas de memoria resultan más resistentes que los CD-ROM y los DVD-ROM y, dadas sus dimensiones y su naturaleza compacta, son más fáciles de trasladar.
Los Soportes de Almacenamiento
Un soporte de almacenamiento es un sistema que da soporte al almacenamiento de
datos en un computador. En todo soporte de almacenamiento podemos identificar dos elementos
principales: un medio de almacenamiento y un dispositivo electrónico que escribe y lee datos en
él. Veámoslos:
– El medio de almacenamiento es el medio físico donde se almacenan los datos, y puede ser
extraible o no extraible:
– Extraible. Es el caso de los disquetes, CD, DVD, etc. Al ser extraibles nos permiten
transportar la información de forma cómoda.
– No extraible. Es el caso del disco que hay dentro de las unidades de disco duro. No
podemos sacarlo a no ser que rompamos la unidad.
– El dispositivo electrónico tiene la función de leer y escribir datos en el medio de
almacenamiento para el cual ha sido diseñado. Podemos clasificarlos en dos tipos:
– Solo lectura. Un dispositivo de solo lectura es aquél que solo puede leer datos, nada de
escribirlos. Ejemplo: Unidad lectora de CD-ROM y DVD-ROM.
– Lectura y escritura. Estos dispositivos tienen la capacidad tanto de leer como de escribir
datos. Ejemplo: Disquetera, unidad grabadora de CD-R y DVD-R.
Por ejemplo, una disquetera es un dispositivo electrónico capaz de guardar información en un
disquete, que en este caso sería el medio de almacenamiento. De igual modo, una grabadora de
DVD es un dispositivo electrónico capaz de guardar datos en un disco DVD, que es un medio de
almacenamiento.
Podemos clasificar los soportes de almacenamiento en internos y externos:
– Soportes internos. Son aquellos que se situan en el interior de la caja del ordenador.
– Soportes externos. Son los que están en la periferia del ordenador y se conectan al mismo a
través de un puerto de conexión como por ejemplo el puerto USB o el puerto Fire Wire.
Posted by
Admin
2:02
Unidades de medida en la informatica.
Bit: es una unidad de medida de almacenamiento de información; es la mínima unidad de memoria obtenida del sistema binario y representada por 0 ó 1. Posee capacidad para almacenar sólo dos estados diferentes, encendido (1) ó apagado (0).
Las computadoras, trabajan con el sistema de numeración binario, basado en sólo esos dos valores (0 y 1). El motivo de esto es que las computadoras son un conjunto de circuitos electrónicos y en los circuitos electrónicos existen dos valores posibles: que pase corriente (identificado con el valor 1) o que no pase corriente (identificado con el valor 0). Cada dígito binario recibe el nombre de bit (Binary digiT).
Para disponer de los numerosos caracteres que se necesitan en el lenguaje escrito (letras, números, símbolos, etc.) se requiere que los bits se unan para formar agrupaciones más grandes, cuyas combinaciones permitan identificar distintos caracteres. Esta agrupación de bits, se denomina byte.
Byte: También es una unidad de medida de almacenamiento de información. Pero esta unidad de memoria equivalente a 8 bits consecutivos. Al definir el byte como la combinación de 8 bits, se pueden lograr 256 combinaciones (2^8). Estas son más que suficientes para todo el alfabeto, los signos de puntuación, los números y muchos otros caracteres especiales. Cada caracter (letra, número o símbolo) que se introduce en una computadora se convierte en un byte siguiendo las equivalencias de un código, generalmente el código ASCII.
Kilobyte (KBytes): [Abrev. KB ] Unidad de medida de almacenamiento de información. Unidad de memoria equivalente a 1024 bytes.
Megabyte (MBytes): [Abrev. MB ] Unidad de medida de almacenamiento de información. Unidad de memoria equivalente a 1024 Kilobytes. Es la unidad mas típica actualmente, usándose para verificar la capacidad de la memoria RAM, de las memorias de tarjetas gráficas, de los CD-ROM, o el tamaño de los programas, de los archivos grandes, etc. Parece que todavía le queda bastante tiempo de vida aunque para referirse a la capacidad de los discos duros ya ha q
Gigabyte (GBytes): [Abrev. GB ] Unidad de medida de almacenamiento de información. Unidad de memoria equivalente a 1024 Megabytes.
Terabyte (TByte): [Abrev. TB ] Unidad de medida de almacenamiento de información. Unidad de memoria equivalente a 1024 Gigabytes. Es una unidad de almacenamiento tan desorbitada que resulta imposible imaginársela, ya que coincide con algo mas de un trillón de bytes.
Petabyte (PByte): [Abrev. PB ] Unidad de medida de almacenamiento de información. Unidad de memoria equivalente a 1024 Terabytes.
Exabyte (EByte): [Abrev. EB ] Unidad de medida de almacenamiento de información. Unidad de memoria equivalente a 1024 Petabytes.
Zetabyte (ZByte): [Abrev. ZB ] Unidad de medida de almacenamiento de información. Unidad de memoria equivalente a 1024 Exabytes.
uedado obsoleta, siendo lo habitual hablar de Gigabytes.
Posted by
Admin
1:53
martes, 7 de abril de 2015
Las Partes Del Motherboard
El motherboard es el dispositivo más importante de la PC. Su complejidad radica en la cantidad de componentes integrados, los cuales determinan no sólo el rendimiento de los componentes internos, sino de los componentes de expansión y el de la PC en forma global.
1- Conector para puerto IEEE 1394: este es el puerto por donde se conectan
dispositivos para esta tecnología.
IEEE 1394 es un tipo de conexión para diversas plataformas, destinado a la entrada y salida de datos en serie a gran velocidad. Suele utilizarse para la interconexión de dispositivos digitales como cámaras digitales y videocámaras a computadoras. Existen cuatro versiones de 4, 6, 9 y 12 pines. En el mercado doméstico su popularidad ha disminuido entre los fabricantes de hardware, y se ha sustituido por el interfaz USB en sus versiones 2.0 y 3.0, o el interfaz Thunderbolt.
2- Slot de expansión PCI convencional 32 bits: aquí se colocan placas de expansión.
La ranura de expansión (o slot de expansión) es un elemento de la placa base de la computadora, que permite conectarla a una tarjeta de expansión o tarjeta adicional, la cual puede realizar funciones de control de dispositivos periféricos adicionales, por ejemplo: monitores, proyectores, televisores, módems, impresoras o unidades de disco.
3- Slot de expansión dedicado (para placas de video) PCI Express 16X: aquí sólo se
colocan placas de video.
La función del slot de video es actuar como interfaz (intermediario) entre el motherboard y lo que se conoce como placa o tarjeta de video, para diferenciarse del dispositivo de video que viene integrado al motherboard.
4- Slot de expansión PCI Express 1X: aquí se conectan placas de expansión.
PCI Express (anteriormente conocido por las siglas 3GIO, en el caso de las "Entradas/Salidas de Tercera Generación", en inglés: 3rd Generation In/Out) es un nuevo desarrollo del bus PCI que usa los conceptos de programación y los estándares de comunicación existentes, pero se basa en un sistema de comunicación serie mucho más rápido. Este sistema es apoyado principalmente por Intel, que empezó a desarrollar el estándar con nombre de proyecto Arapahoe después de retirarse del sistema Infiniband.
5- Chipset principal: también se lo conoce como puente norte.
Un chipset (traducido como circuito integrado auxiliar) es el conjunto de circuitos integrados diseñados con base en la arquitectura de un procesador (en algunos casos, diseñados como parte integral de esa arquitectura), permitiendo que ese tipo de procesadores funcionen en una placa base. Sirven de puente de comunicación con el resto de componentes de la placa, como son la memoria, las tarjetas de expansión, los puertos USB, ratón, teclado, etc.
6- Panel trasero: aquí se conectan los dispositivos y periféricos externos.
Un panel de conexiones (patch panel), también denominado bahía de rutas, es el elemento encargado de recibir todos los cables del cableado estructurado.
7- Zócalo para el microprocesador: aquí se coloca el procesador.
El zócalo de CPU (socket) es un tipo de zócalo electrónico (sistema electromecánico de soporte y conexión eléctrica) instalado en la placa base, que se usa para fijar y conectar el microprocesador, sin soldarlo lo cual permite ser extraído después. Por ello, se utiliza en equipos de arquitectura abierta, donde se busca que haya modularidad en la variedad de componentes, permitiendo el cambio de la tarjeta o el integrado. En los equipos de arquitectura propietaria, los integrados se añaden sobre la placa base soldándolo, como sucede en las videoconsolas.
8- Ranuras para los módulos de memoria RAM DDR3.
La memoria de acceso aleatorio (Random-Access Memory, RAM) se utiliza como memoria de trabajo de computadoras para el sistema operativo, los programas y la mayor parte del software.
La memoria RAM es otro de los dispositivos críticos de la PC. Al tener cierta prioridad o relevancia sobre el conjunto de los dispositivos no críticos, el módulo de memoria RAM se instala físicamente sobre el motherboard. Para ello, la placa base necesita de una interfaz que soporta cada módulo de RAM.
DDR-3 proviene de ("Dual Data Rate 3"), lo que traducido significa transmisión doble de datos tercer generación: son el mas moderno estándar, un tipo de memorias DRAM (RAM de celdas construidas a base de capacitores), las cuáles tienen los chips de memoria en ambos lados de la tarjeta y cuentan con un conector especial de 240 terminales para ranuras de la tarjeta principal (Motherboard). También se les denomina DIMM tipo DDR3, debido a que cuentan con conectores físicamente independientes por ambas caras como el primer estándar DIMM. Este tipo de memoria cuenta en su gran mayoría de modelos con disipadores de calor, debido a que se sobrecalientan.
9- Conector principal de alimentación ATX2.
Un cable de alimentación es un cable eléctrico que sirve para conectar los electrodomésticos o cualquier otro tipo de dispositivo eléctrico a la red de suministro a través de un enchufe o conectándose a un alargador eléctrico. Se caracteriza porque forma una conexión temporal, fácil de desconectar y volver de reconectar en cualquier otro punto de red.
ATX son las siglas de ("Advanced Technology eXtended") ó tecnología avanzada extendida, que es una segunda generación de fuentes de alimentación introducidas al mercado para computadoras con microprocesador Intel® Pentium MMX, y a partir de ese momento, se extiende su uso.
10- Batería CMOS: es la que mantiene los datos del SETUP.
RAM-CMOS es un tipo de memoria que almacena información sobre la configuración del sistema, por ejemplo la elección de velocidad de buses, overclock del procesador, activación de dispositivos, entre otras. Esta información se puede modificar por medio de una utilidad de la BIOS que puede ser invocada por el usuario durante el arranque del sistema. Debido a ello suele confundirse con la propia BIOS, pero es una entidad de memoria diferente.
11- Conectores SATA 2.
Serial ATA o SATA (Serial Advanced Technology Attachment) es una interfaz de transferencia de datos entre la placa base y algunos dispositivos de almacenamiento.
12- Conector IDE: sirve para integrar dispositivos IDE.
La interfaz ATA (Advanced Technology Attachment) o Parallel ATA (PATA), originalmente conocido como IDE (Integrated Device Electronics), es un estándar de interfaz para la conexión de los dispositivos de almacenamiento masivo de datos y las unidades ópticas que utiliza el estándar derivado de ATA y el estándar ATAPI.
13- Puertos SATA 2: se utilizan para integrar dispositivos SATA.
Conector SATA (Serial Advanced Technology Attachment): esta tecnología es la utilizada
actualmente en los motherboards SATA2 (última versión). Es un conector que
sirve de interfaz a los discos duros y a las unidades ópticas que utilizan esta tecnología.
Se trata de una ficha soldada al motherboard que posee 7 pines (recordemos
que IDE posee 40 pines) y una muesca de posición para evitar su mala conexión.
14- Pines conectores para el panel frontal: a través de estos conectores se enchufan
los objetos del panel frontal.
Al hablar de panel frontal, nos referimos al conjunto de pines que se encuentra sobre
una de las esquinas anteriores del motherboard. Su función es conectar la botonera de
mando central de la PC que se compone del botón de encendido o Power, la tecla de
Reset, el LED on/off (encendido/apagado) y el LED de carga de disco duro.
Además de los mencionados, podemos encontrarnos con otro grupo de pines que
corresponden a la conexión de puertos USB y salidas/entradas de audio.
15- Conector para un chip de seguridad.
En informática, un módulo de plataforma de confianza (Trusted Platform Module TPM por sus siglas en inglés) es el nombre de una especificación publicada que detalla un criptoprocesador seguro que puede almacenar claves de cifrado para proteger información, así como el nombre general de las implementaciones de dicha especificación, frecuentemente llamadas el "chip TPM" o "dispositivo de seguridad TPM".
16- Chipset secundario: también se lo conoce como puente sur.
Cuando hablamos de chipset, hacemos referencia a un grupo de chips esencialmente
diseñados para realizar determinadas tareas. Podemos asegurar que la mé-
dula ósea de cada placa base es el conjunto de chips que el fabricante ha instalado
en su superficie. En otras palabras, si el motherboard es el dispositivo que determinará
el rendimiento de la PC, el chipset establecerá la performance del motherboard,
de allí su radical importancia.
17- Conector para agregar un puerto serial.
Los puertos seriales (también llamados RS-232, por el nombre del estándar al que hacen referencia) fueron las primeras interfaces que permitieron que los equipos intercambien información con el "mundo exterior". El término serial se refiere a los datos enviados mediante un solo hilo: los bits se envían uno detrás del otro (consulte la sección sobre transmisión de datos para conocer los modos de transmisión).
18- Conectores para puertos USB.
El Bus Universal en Serie (BUS) (en inglés: Universal Serial Bus), más conocido por la sigla USB, es un bus estándar industrial que define los cables, conectores y protocolos usados en un bus para conectar, comunicar y proveer de alimentación eléctrica entre computadoras, periféricos y dispositivos electrónicos.
19- Switch de la CPU: sirve para variar el reloj del procesador.
Un cambio de contexto consiste en la ejecución de una rutina perteneciente al núcleo del sistema operativo multitarea de una computadora, cuyo propósito es parar la ejecución de un hilo (o proceso o Threads) para dar paso a la ejecución de otro distinto.
20- Botonera integrada, encendido, reset y selección de LEDs testigos.
Posted by
Admin
18:14
Suscribirse a:
Entradas
(
Atom
)